3.13.43 \(\int (a+b \tan (e+f x)) (c+d \tan (e+f x))^{5/2} \, dx\) [1243]

3.13.43.1 Optimal result
3.13.43.2 Mathematica [A] (verified)
3.13.43.3 Rubi [A] (warning: unable to verify)
3.13.43.4 Maple [B] (verified)
3.13.43.5 Fricas [B] (verification not implemented)
3.13.43.6 Sympy [F]
3.13.43.7 Maxima [F(-2)]
3.13.43.8 Giac [F(-1)]
3.13.43.9 Mupad [B] (verification not implemented)

3.13.43.1 Optimal result

Integrand size = 25, antiderivative size = 188 \[ \int (a+b \tan (e+f x)) (c+d \tan (e+f x))^{5/2} \, dx=-\frac {(i a+b) (c-i d)^{5/2} \text {arctanh}\left (\frac {\sqrt {c+d \tan (e+f x)}}{\sqrt {c-i d}}\right )}{f}+\frac {(i a-b) (c+i d)^{5/2} \text {arctanh}\left (\frac {\sqrt {c+d \tan (e+f x)}}{\sqrt {c+i d}}\right )}{f}+\frac {2 \left (2 a c d+b \left (c^2-d^2\right )\right ) \sqrt {c+d \tan (e+f x)}}{f}+\frac {2 (b c+a d) (c+d \tan (e+f x))^{3/2}}{3 f}+\frac {2 b (c+d \tan (e+f x))^{5/2}}{5 f} \]

output
-(I*a+b)*(c-I*d)^(5/2)*arctanh((c+d*tan(f*x+e))^(1/2)/(c-I*d)^(1/2))/f+(I* 
a-b)*(c+I*d)^(5/2)*arctanh((c+d*tan(f*x+e))^(1/2)/(c+I*d)^(1/2))/f+2*(2*a* 
c*d+b*(c^2-d^2))*(c+d*tan(f*x+e))^(1/2)/f+2/3*(a*d+b*c)*(c+d*tan(f*x+e))^( 
3/2)/f+2/5*b*(c+d*tan(f*x+e))^(5/2)/f
 
3.13.43.2 Mathematica [A] (verified)

Time = 1.17 (sec) , antiderivative size = 233, normalized size of antiderivative = 1.24 \[ \int (a+b \tan (e+f x)) (c+d \tan (e+f x))^{5/2} \, dx=\frac {i \left ((a-i b) \left (\frac {2}{5} (c+d \tan (e+f x))^{5/2}+\frac {2}{3} (c-i d) \left (-3 (c-i d)^{3/2} \text {arctanh}\left (\frac {\sqrt {c+d \tan (e+f x)}}{\sqrt {c-i d}}\right )+\sqrt {c+d \tan (e+f x)} (4 c-3 i d+d \tan (e+f x))\right )\right )-(a+i b) \left (\frac {2}{5} (c+d \tan (e+f x))^{5/2}+\frac {2}{3} (c+i d) \left (-3 (c+i d)^{3/2} \text {arctanh}\left (\frac {\sqrt {c+d \tan (e+f x)}}{\sqrt {c+i d}}\right )+\sqrt {c+d \tan (e+f x)} (4 c+3 i d+d \tan (e+f x))\right )\right )\right )}{2 f} \]

input
Integrate[(a + b*Tan[e + f*x])*(c + d*Tan[e + f*x])^(5/2),x]
 
output
((I/2)*((a - I*b)*((2*(c + d*Tan[e + f*x])^(5/2))/5 + (2*(c - I*d)*(-3*(c 
- I*d)^(3/2)*ArcTanh[Sqrt[c + d*Tan[e + f*x]]/Sqrt[c - I*d]] + Sqrt[c + d* 
Tan[e + f*x]]*(4*c - (3*I)*d + d*Tan[e + f*x])))/3) - (a + I*b)*((2*(c + d 
*Tan[e + f*x])^(5/2))/5 + (2*(c + I*d)*(-3*(c + I*d)^(3/2)*ArcTanh[Sqrt[c 
+ d*Tan[e + f*x]]/Sqrt[c + I*d]] + Sqrt[c + d*Tan[e + f*x]]*(4*c + (3*I)*d 
 + d*Tan[e + f*x])))/3)))/f
 
3.13.43.3 Rubi [A] (warning: unable to verify)

Time = 1.00 (sec) , antiderivative size = 169, normalized size of antiderivative = 0.90, number of steps used = 14, number of rules used = 13, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.520, Rules used = {3042, 4011, 3042, 4011, 3042, 4011, 3042, 4022, 3042, 4020, 25, 73, 221}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int (a+b \tan (e+f x)) (c+d \tan (e+f x))^{5/2} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int (a+b \tan (e+f x)) (c+d \tan (e+f x))^{5/2}dx\)

\(\Big \downarrow \) 4011

\(\displaystyle \int (c+d \tan (e+f x))^{3/2} (a c-b d+(b c+a d) \tan (e+f x))dx+\frac {2 b (c+d \tan (e+f x))^{5/2}}{5 f}\)

\(\Big \downarrow \) 3042

\(\displaystyle \int (c+d \tan (e+f x))^{3/2} (a c-b d+(b c+a d) \tan (e+f x))dx+\frac {2 b (c+d \tan (e+f x))^{5/2}}{5 f}\)

\(\Big \downarrow \) 4011

\(\displaystyle \int \sqrt {c+d \tan (e+f x)} \left (-2 b c d+a \left (c^2-d^2\right )+\left (2 a c d+b \left (c^2-d^2\right )\right ) \tan (e+f x)\right )dx+\frac {2 (a d+b c) (c+d \tan (e+f x))^{3/2}}{3 f}+\frac {2 b (c+d \tan (e+f x))^{5/2}}{5 f}\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \sqrt {c+d \tan (e+f x)} \left (-2 b c d+a \left (c^2-d^2\right )+\left (2 a c d+b \left (c^2-d^2\right )\right ) \tan (e+f x)\right )dx+\frac {2 (a d+b c) (c+d \tan (e+f x))^{3/2}}{3 f}+\frac {2 b (c+d \tan (e+f x))^{5/2}}{5 f}\)

\(\Big \downarrow \) 4011

\(\displaystyle \int \frac {-b d \left (3 c^2-d^2\right )+a \left (c^3-3 c d^2\right )+\left (b c^3+3 a d c^2-3 b d^2 c-a d^3\right ) \tan (e+f x)}{\sqrt {c+d \tan (e+f x)}}dx+\frac {2 \left (2 a c d+b \left (c^2-d^2\right )\right ) \sqrt {c+d \tan (e+f x)}}{f}+\frac {2 (a d+b c) (c+d \tan (e+f x))^{3/2}}{3 f}+\frac {2 b (c+d \tan (e+f x))^{5/2}}{5 f}\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {-b d \left (3 c^2-d^2\right )+a \left (c^3-3 c d^2\right )+\left (b c^3+3 a d c^2-3 b d^2 c-a d^3\right ) \tan (e+f x)}{\sqrt {c+d \tan (e+f x)}}dx+\frac {2 \left (2 a c d+b \left (c^2-d^2\right )\right ) \sqrt {c+d \tan (e+f x)}}{f}+\frac {2 (a d+b c) (c+d \tan (e+f x))^{3/2}}{3 f}+\frac {2 b (c+d \tan (e+f x))^{5/2}}{5 f}\)

\(\Big \downarrow \) 4022

\(\displaystyle \frac {1}{2} (a-i b) (c-i d)^3 \int \frac {i \tan (e+f x)+1}{\sqrt {c+d \tan (e+f x)}}dx+\frac {1}{2} (a+i b) (c+i d)^3 \int \frac {1-i \tan (e+f x)}{\sqrt {c+d \tan (e+f x)}}dx+\frac {2 \left (2 a c d+b \left (c^2-d^2\right )\right ) \sqrt {c+d \tan (e+f x)}}{f}+\frac {2 (a d+b c) (c+d \tan (e+f x))^{3/2}}{3 f}+\frac {2 b (c+d \tan (e+f x))^{5/2}}{5 f}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {1}{2} (a-i b) (c-i d)^3 \int \frac {i \tan (e+f x)+1}{\sqrt {c+d \tan (e+f x)}}dx+\frac {1}{2} (a+i b) (c+i d)^3 \int \frac {1-i \tan (e+f x)}{\sqrt {c+d \tan (e+f x)}}dx+\frac {2 \left (2 a c d+b \left (c^2-d^2\right )\right ) \sqrt {c+d \tan (e+f x)}}{f}+\frac {2 (a d+b c) (c+d \tan (e+f x))^{3/2}}{3 f}+\frac {2 b (c+d \tan (e+f x))^{5/2}}{5 f}\)

\(\Big \downarrow \) 4020

\(\displaystyle \frac {i (a-i b) (c-i d)^3 \int -\frac {1}{(1-i \tan (e+f x)) \sqrt {c+d \tan (e+f x)}}d(i \tan (e+f x))}{2 f}-\frac {i (a+i b) (c+i d)^3 \int -\frac {1}{(i \tan (e+f x)+1) \sqrt {c+d \tan (e+f x)}}d(-i \tan (e+f x))}{2 f}+\frac {2 \left (2 a c d+b \left (c^2-d^2\right )\right ) \sqrt {c+d \tan (e+f x)}}{f}+\frac {2 (a d+b c) (c+d \tan (e+f x))^{3/2}}{3 f}+\frac {2 b (c+d \tan (e+f x))^{5/2}}{5 f}\)

\(\Big \downarrow \) 25

\(\displaystyle -\frac {i (a-i b) (c-i d)^3 \int \frac {1}{(1-i \tan (e+f x)) \sqrt {c+d \tan (e+f x)}}d(i \tan (e+f x))}{2 f}+\frac {i (a+i b) (c+i d)^3 \int \frac {1}{(i \tan (e+f x)+1) \sqrt {c+d \tan (e+f x)}}d(-i \tan (e+f x))}{2 f}+\frac {2 \left (2 a c d+b \left (c^2-d^2\right )\right ) \sqrt {c+d \tan (e+f x)}}{f}+\frac {2 (a d+b c) (c+d \tan (e+f x))^{3/2}}{3 f}+\frac {2 b (c+d \tan (e+f x))^{5/2}}{5 f}\)

\(\Big \downarrow \) 73

\(\displaystyle \frac {(a-i b) (c-i d)^3 \int \frac {1}{\frac {i \tan ^2(e+f x)}{d}+\frac {i c}{d}+1}d\sqrt {c+d \tan (e+f x)}}{d f}+\frac {(a+i b) (c+i d)^3 \int \frac {1}{-\frac {i \tan ^2(e+f x)}{d}-\frac {i c}{d}+1}d\sqrt {c+d \tan (e+f x)}}{d f}+\frac {2 \left (2 a c d+b \left (c^2-d^2\right )\right ) \sqrt {c+d \tan (e+f x)}}{f}+\frac {2 (a d+b c) (c+d \tan (e+f x))^{3/2}}{3 f}+\frac {2 b (c+d \tan (e+f x))^{5/2}}{5 f}\)

\(\Big \downarrow \) 221

\(\displaystyle \frac {(a-i b) (c-i d)^{5/2} \arctan \left (\frac {\tan (e+f x)}{\sqrt {c-i d}}\right )}{f}+\frac {(a+i b) (c+i d)^{5/2} \arctan \left (\frac {\tan (e+f x)}{\sqrt {c+i d}}\right )}{f}+\frac {2 \left (2 a c d+b \left (c^2-d^2\right )\right ) \sqrt {c+d \tan (e+f x)}}{f}+\frac {2 (a d+b c) (c+d \tan (e+f x))^{3/2}}{3 f}+\frac {2 b (c+d \tan (e+f x))^{5/2}}{5 f}\)

input
Int[(a + b*Tan[e + f*x])*(c + d*Tan[e + f*x])^(5/2),x]
 
output
((a - I*b)*(c - I*d)^(5/2)*ArcTan[Tan[e + f*x]/Sqrt[c - I*d]])/f + ((a + I 
*b)*(c + I*d)^(5/2)*ArcTan[Tan[e + f*x]/Sqrt[c + I*d]])/f + (2*(2*a*c*d + 
b*(c^2 - d^2))*Sqrt[c + d*Tan[e + f*x]])/f + (2*(b*c + a*d)*(c + d*Tan[e + 
 f*x])^(3/2))/(3*f) + (2*b*(c + d*Tan[e + f*x])^(5/2))/(5*f)
 

3.13.43.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 73
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[ 
{p = Denominator[m]}, Simp[p/b   Subst[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + 
 d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] && Lt 
Q[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntL 
inearQ[a, b, c, d, m, n, x]
 

rule 221
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x 
/Rt[-a/b, 2]], x] /; FreeQ[{a, b}, x] && NegQ[a/b]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 4011
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + 
 (f_.)*(x_)]), x_Symbol] :> Simp[d*((a + b*Tan[e + f*x])^m/(f*m)), x] + Int 
[(a + b*Tan[e + f*x])^(m - 1)*Simp[a*c - b*d + (b*c + a*d)*Tan[e + f*x], x] 
, x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 
 0] && GtQ[m, 0]
 

rule 4020
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*tan[(e_.) + 
(f_.)*(x_)]), x_Symbol] :> Simp[c*(d/f)   Subst[Int[(a + (b/d)*x)^m/(d^2 + 
c*x), x], x, d*Tan[e + f*x]], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[ 
b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && EqQ[c^2 + d^2, 0]
 

rule 4022
Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + 
 (f_.)*(x_)]), x_Symbol] :> Simp[(c + I*d)/2   Int[(a + b*Tan[e + f*x])^m*( 
1 - I*Tan[e + f*x]), x], x] + Simp[(c - I*d)/2   Int[(a + b*Tan[e + f*x])^m 
*(1 + I*Tan[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[b*c 
 - a*d, 0] && NeQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] &&  !IntegerQ[m]
 
3.13.43.4 Maple [B] (verified)

Leaf count of result is larger than twice the leaf count of optimal. \(2391\) vs. \(2(160)=320\).

Time = 0.89 (sec) , antiderivative size = 2392, normalized size of antiderivative = 12.72

method result size
parts \(\text {Expression too large to display}\) \(2392\)
derivativedivides \(\text {Expression too large to display}\) \(2405\)
default \(\text {Expression too large to display}\) \(2405\)

input
int((a+b*tan(f*x+e))*(c+d*tan(f*x+e))^(5/2),x,method=_RETURNVERBOSE)
 
output
a*(2/3/f*d*(c+d*tan(f*x+e))^(3/2)+4/f*d*(c+d*tan(f*x+e))^(1/2)*c-1/4/f/d*l 
n(d*tan(f*x+e)+c+(c+d*tan(f*x+e))^(1/2)*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)+(c^2 
+d^2)^(1/2))*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)*(c^2+d^2)^(1/2)*c^2+1/4/f*d*ln( 
d*tan(f*x+e)+c+(c+d*tan(f*x+e))^(1/2)*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)+(c^2+d 
^2)^(1/2))*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)*(c^2+d^2)^(1/2)+1/4/f/d*ln(d*tan( 
f*x+e)+c+(c+d*tan(f*x+e))^(1/2)*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)+(c^2+d^2)^(1 
/2))*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)*c^3-3/4/f*d*ln(d*tan(f*x+e)+c+(c+d*tan( 
f*x+e))^(1/2)*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)+(c^2+d^2)^(1/2))*(2*(c^2+d^2)^ 
(1/2)+2*c)^(1/2)*c+3/f*d/(2*(c^2+d^2)^(1/2)-2*c)^(1/2)*arctan((2*(c+d*tan( 
f*x+e))^(1/2)+(2*(c^2+d^2)^(1/2)+2*c)^(1/2))/(2*(c^2+d^2)^(1/2)-2*c)^(1/2) 
)*c^2-1/f*d^3/(2*(c^2+d^2)^(1/2)-2*c)^(1/2)*arctan((2*(c+d*tan(f*x+e))^(1/ 
2)+(2*(c^2+d^2)^(1/2)+2*c)^(1/2))/(2*(c^2+d^2)^(1/2)-2*c)^(1/2))-2/f*d/(2* 
(c^2+d^2)^(1/2)-2*c)^(1/2)*arctan((2*(c+d*tan(f*x+e))^(1/2)+(2*(c^2+d^2)^( 
1/2)+2*c)^(1/2))/(2*(c^2+d^2)^(1/2)-2*c)^(1/2))*(c^2+d^2)^(1/2)*c+1/4/f/d* 
ln((c+d*tan(f*x+e))^(1/2)*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)-d*tan(f*x+e)-c-(c^ 
2+d^2)^(1/2))*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)*(c^2+d^2)^(1/2)*c^2-1/4/f*d*ln 
((c+d*tan(f*x+e))^(1/2)*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)-d*tan(f*x+e)-c-(c^2+ 
d^2)^(1/2))*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)*(c^2+d^2)^(1/2)-1/4/f/d*ln((c+d* 
tan(f*x+e))^(1/2)*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)-d*tan(f*x+e)-c-(c^2+d^2)^( 
1/2))*(2*(c^2+d^2)^(1/2)+2*c)^(1/2)*c^3+3/4/f*d*ln((c+d*tan(f*x+e))^(1/...
 
3.13.43.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 4855 vs. \(2 (155) = 310\).

Time = 0.85 (sec) , antiderivative size = 4855, normalized size of antiderivative = 25.82 \[ \int (a+b \tan (e+f x)) (c+d \tan (e+f x))^{5/2} \, dx=\text {Too large to display} \]

input
integrate((a+b*tan(f*x+e))*(c+d*tan(f*x+e))^(5/2),x, algorithm="fricas")
 
output
-1/30*(15*f*sqrt((10*a*b*c^4*d - 20*a*b*c^2*d^3 + 2*a*b*d^5 - (a^2 - b^2)* 
c^5 + 10*(a^2 - b^2)*c^3*d^2 - 5*(a^2 - b^2)*c*d^4 + f^2*sqrt(-(4*a^2*b^2* 
c^10 + 20*(a^3*b - a*b^3)*c^9*d + 5*(5*a^4 - 26*a^2*b^2 + 5*b^4)*c^8*d^2 - 
 240*(a^3*b - a*b^3)*c^7*d^3 - 20*(5*a^4 - 32*a^2*b^2 + 5*b^4)*c^6*d^4 + 5 
04*(a^3*b - a*b^3)*c^5*d^5 + 10*(11*a^4 - 62*a^2*b^2 + 11*b^4)*c^4*d^6 - 2 
40*(a^3*b - a*b^3)*c^3*d^7 - 20*(a^4 - 7*a^2*b^2 + b^4)*c^2*d^8 + 20*(a^3* 
b - a*b^3)*c*d^9 + (a^4 - 2*a^2*b^2 + b^4)*d^10)/f^4))/f^2)*log(-(2*(a^3*b 
 + a*b^3)*c^9 + 5*(a^4 - b^4)*c^8*d - 16*(a^3*b + a*b^3)*c^7*d^2 - 28*(a^3 
*b + a*b^3)*c^5*d^4 - 14*(a^4 - b^4)*c^4*d^5 - 8*(a^4 - b^4)*c^2*d^7 + 10* 
(a^3*b + a*b^3)*c*d^8 + (a^4 - b^4)*d^9)*sqrt(d*tan(f*x + e) + c) + ((a*c^ 
2 - 2*b*c*d - a*d^2)*f^3*sqrt(-(4*a^2*b^2*c^10 + 20*(a^3*b - a*b^3)*c^9*d 
+ 5*(5*a^4 - 26*a^2*b^2 + 5*b^4)*c^8*d^2 - 240*(a^3*b - a*b^3)*c^7*d^3 - 2 
0*(5*a^4 - 32*a^2*b^2 + 5*b^4)*c^6*d^4 + 504*(a^3*b - a*b^3)*c^5*d^5 + 10* 
(11*a^4 - 62*a^2*b^2 + 11*b^4)*c^4*d^6 - 240*(a^3*b - a*b^3)*c^3*d^7 - 20* 
(a^4 - 7*a^2*b^2 + b^4)*c^2*d^8 + 20*(a^3*b - a*b^3)*c*d^9 + (a^4 - 2*a^2* 
b^2 + b^4)*d^10)/f^4) - (2*a*b^2*c^7 + (9*a^2*b - 5*b^3)*c^6*d + 2*(5*a^3 
- 16*a*b^2)*c^5*d^2 - 5*(11*a^2*b - 3*b^3)*c^4*d^3 - 10*(2*a^3 - 5*a*b^2)* 
c^3*d^4 + (31*a^2*b - 11*b^3)*c^2*d^5 + 2*(a^3 - 6*a*b^2)*c*d^6 - (a^2*b - 
 b^3)*d^7)*f)*sqrt((10*a*b*c^4*d - 20*a*b*c^2*d^3 + 2*a*b*d^5 - (a^2 - b^2 
)*c^5 + 10*(a^2 - b^2)*c^3*d^2 - 5*(a^2 - b^2)*c*d^4 + f^2*sqrt(-(4*a^2...
 
3.13.43.6 Sympy [F]

\[ \int (a+b \tan (e+f x)) (c+d \tan (e+f x))^{5/2} \, dx=\int \left (a + b \tan {\left (e + f x \right )}\right ) \left (c + d \tan {\left (e + f x \right )}\right )^{\frac {5}{2}}\, dx \]

input
integrate((a+b*tan(f*x+e))*(c+d*tan(f*x+e))**(5/2),x)
 
output
Integral((a + b*tan(e + f*x))*(c + d*tan(e + f*x))**(5/2), x)
 
3.13.43.7 Maxima [F(-2)]

Exception generated. \[ \int (a+b \tan (e+f x)) (c+d \tan (e+f x))^{5/2} \, dx=\text {Exception raised: ValueError} \]

input
integrate((a+b*tan(f*x+e))*(c+d*tan(f*x+e))^(5/2),x, algorithm="maxima")
 
output
Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume(d-c>0)', see `assume?` for more 
details)Is
 
3.13.43.8 Giac [F(-1)]

Timed out. \[ \int (a+b \tan (e+f x)) (c+d \tan (e+f x))^{5/2} \, dx=\text {Timed out} \]

input
integrate((a+b*tan(f*x+e))*(c+d*tan(f*x+e))^(5/2),x, algorithm="giac")
 
output
Timed out
 
3.13.43.9 Mupad [B] (verification not implemented)

Time = 39.96 (sec) , antiderivative size = 3863, normalized size of antiderivative = 20.55 \[ \int (a+b \tan (e+f x)) (c+d \tan (e+f x))^{5/2} \, dx=\text {Too large to display} \]

input
int((a + b*tan(e + f*x))*(c + d*tan(e + f*x))^(5/2),x)
 
output
log(- ((((-b^4*d^2*f^4*(5*c^4 + d^4 - 10*c^2*d^2)^2)^(1/2) + b^2*c^5*f^2 + 
 5*b^2*c*d^4*f^2 - 10*b^2*c^3*d^2*f^2)/f^4)^(1/2)*(((((-b^4*d^2*f^4*(5*c^4 
 + d^4 - 10*c^2*d^2)^2)^(1/2) + b^2*c^5*f^2 + 5*b^2*c*d^4*f^2 - 10*b^2*c^3 
*d^2*f^2)/f^4)^(1/2)*(32*b*d^6 - 32*b*c^4*d^2 + 32*c*d^2*f*(((-b^4*d^2*f^4 
*(5*c^4 + d^4 - 10*c^2*d^2)^2)^(1/2) + b^2*c^5*f^2 + 5*b^2*c*d^4*f^2 - 10* 
b^2*c^3*d^2*f^2)/f^4)^(1/2)*(c + d*tan(e + f*x))^(1/2)))/(2*f) - (16*b^2*d 
^2*(c + d*tan(e + f*x))^(1/2)*(c^6 - d^6 + 15*c^2*d^4 - 15*c^4*d^2))/f^2)) 
/2 - (8*b^3*c*d^2*(c^2 - 3*d^2)*(c^2 + d^2)^3)/f^3)*((20*b^4*c^2*d^8*f^4 - 
 b^4*d^10*f^4 - 110*b^4*c^4*d^6*f^4 + 100*b^4*c^6*d^4*f^4 - 25*b^4*c^8*d^2 
*f^4)^(1/2)/(4*f^4) + (b^2*c^5)/(4*f^2) + (5*b^2*c*d^4)/(4*f^2) - (5*b^2*c 
^3*d^2)/(2*f^2))^(1/2) - log(((((-b^4*d^2*f^4*(5*c^4 + d^4 - 10*c^2*d^2)^2 
)^(1/2) + b^2*c^5*f^2 + 5*b^2*c*d^4*f^2 - 10*b^2*c^3*d^2*f^2)/f^4)^(1/2)*( 
((((-b^4*d^2*f^4*(5*c^4 + d^4 - 10*c^2*d^2)^2)^(1/2) + b^2*c^5*f^2 + 5*b^2 
*c*d^4*f^2 - 10*b^2*c^3*d^2*f^2)/f^4)^(1/2)*(32*b*c^4*d^2 - 32*b*d^6 + 32* 
c*d^2*f*(((-b^4*d^2*f^4*(5*c^4 + d^4 - 10*c^2*d^2)^2)^(1/2) + b^2*c^5*f^2 
+ 5*b^2*c*d^4*f^2 - 10*b^2*c^3*d^2*f^2)/f^4)^(1/2)*(c + d*tan(e + f*x))^(1 
/2)))/(2*f) - (16*b^2*d^2*(c + d*tan(e + f*x))^(1/2)*(c^6 - d^6 + 15*c^2*d 
^4 - 15*c^4*d^2))/f^2))/2 - (8*b^3*c*d^2*(c^2 - 3*d^2)*(c^2 + d^2)^3)/f^3) 
*(((20*b^4*c^2*d^8*f^4 - b^4*d^10*f^4 - 110*b^4*c^4*d^6*f^4 + 100*b^4*c^6* 
d^4*f^4 - 25*b^4*c^8*d^2*f^4)^(1/2) + b^2*c^5*f^2 + 5*b^2*c*d^4*f^2 - 1...